前提
必备知识
熟悉Stage3D API,对其结构基本了解。对顶点和片段着色器,着色器语言基本了解。在阅读本文之前,强烈建议将本系列的前三篇教程完成(1、Stage3D如何工作 2、顶点和片段着色器 3、何为AGAL)
所需额外产品
Flex 4.5 SDK
Download
Flayer Player 11中的playerglobal.swc文件
Download
Flash Player 11
Download
用户级别
中级
所需软件
Flash Builder 4.5 (Download trial)
Flash Professional CS5.5(Download trial)
实例文件
hello_triangle_textured.zip
hello_triangle_colored.zip
在本章中,你将完成一个基于Stage3D API的ActionScript应用。首先你将了解如何搭建Stage3D开发环境。一旦示例工作搭建完成,你将了解如果用AS来初始化 Stage3D,如果创建和渲染由一个超级简单的3D场景,此场景中只包含一个带颜色的三角形。最后,你将一窥为3D图形应用纹理映射的过程。
搭建编译环境
当开始编写Stage3D应用时,我们首先要做的就是搭建编译环境。当然我们可以使用Flex SDK中命令从命令行编译Stage3D应用,但一般来说咱们使用一个比较方便IDE就好了,比如 Flash Builder 4.5。首先从下载和安装Flex SDK(4.5.0.20967或更高)开始,从本文开始部分的链接地址中下载。接下来,从链接中下载Flash Player 11版本的playerglobal.swc文件,并将其拷贝到你刚刚下载的Flex SDK的以下位置:
注意:你需要手动创建名为11.0的文件夹,然后将SWC拷贝进去。如果需要的话,将文件命名为playerglobal.swc。SDK的下一个版本会默认包含playerglobal.swc,所以当SDK升级以后,这一步就不需要了。
以上做完之后,将最新的Flex 4.5 SDK加入到 Flash Builder 4.5编译环境中:选中Preferences > Flash Builder > Installed Flex SDKs,将Flex 4.5 SDK加入。
很显然,你还需要下载带有Stage3D特性的Flash Player 11。用本文最开始的前提部分链接下载吧。
既然你已经建立了带有playerglobal.swc的Flex SDK,并且将其加入了Flash Builder,现在让我们准备创建一个新的ActionScript工程吧!接下来,你还需要配置你的工程让其指向SWF版本13。打开工程属性,点击 ActionScript Compiler页签,在”Additional compiler arguments”输入框中加入“-swf-version=13”。然后在本页签中检查应用是否指向了Flash Player 版本 11。最后,为了让Flash Player能够使用3D硬件加速,你需要将WMODE属性设置为“direct”。在Flash Builder中,打开index.template.html文件,找到params的位置,添加如下代码:
以下截图显示了添加代码的位置:
图1:在index.template.html中设置wmode=”direct”。
以上设置只针对Flash Player中的ActionScript,在AIR应用中,你需要更改应用的描述符,并将renderMode修改为direct。
编译工程确保设置无误,此时应用应该只显示一个黑色的窗口。
初始化Stage3D
现在你已经将ActionScript应用创建了出来,接下来要做的第一件事就是初始化 Stage3D。
为了执行3D渲染,你需要一个Context3D类的实例,让其负责基本上所有的渲染行为。在构造函数中,加入一下代码:
以上代码用Stage3D API请求一个Context3D实例,并且注册了一个监听器。当Context3D创建完成后,会触发initMolehill
函数。
在initMolehill函数的开头,首先要用Context3D的configureBackBuffer 方法来配置Context3D,代码如下:
以上代码表示,场景渲染大小为800乘以600像素,最小等级抗锯齿(第三个参数),并且为渲染表面创建深度和模版缓冲(第四个参数)。
创建一个带颜色的三角形
在本节中,你将创建一些3D几何图形(将被渲染的3D对象),在本例中,我们来创建一个最简单的带颜色的三角形。为了完成以上任务,需要一个 Vertext Buffer,并且指定顶点的位置(x,y,z)及颜色(r,g,b)信息。每个顶点都有6个分量,将顶点数据定义成一个Vector,如下:
然后,创建一个VertextBuffer3D实例,以便将Vertext Buffer上传至GPU。
我们还需要一个Index Buffer来定义三角形。在本例中,这个三角形分别由顶点0,1,2组成。Index Buffer也需要上传至GPU。用IndexBuffer3D类来实现:
以上代码定义了此图形。现在让我们来创建顶点和片段着色器吧。简单起见, 我们使用了本系列上一讲(什么是AGAL)中的着色器程序。顶点着色器只是根据传入的变换矩阵对顶点进行简单的变换,然后将顶点颜色信息向下传输给片段着色器。
片段着色器计算插值颜色并其输出:
你需要AGAL Mini Assembler将着色器源代码编译成目标代码,然后用Program3D API将着色器上传至GPU。
渲染场景
接下来然我们来渲染3D场景吧。在本节中,我们将建立一个渲染的循环,建立一个onRender函数,当ENTER_FRAME事件发生时对其进行调用。
在每次渲染之前,我们要调用Context3D::clear方法,将渲染颜色缓冲(渲染对象的表面颜色)清除,并替换成我们传入的背景色。用以下代码来穿入一个白色的背景:
渲染的每一帧,我们都要启用带有着色器的Program3D,还有包含定点属性的VertexBuffer3D。我们还需要传入一个变换矩阵,此矩阵被顶点着色器使用。让我们传入一个旋转矩阵,以便使三角形每一帧都有不同的变化。
当以上步骤设置完成后,就可以执行真正的渲染了。调用Context3D的drawTriangles()方法,将Index Buffer传入;这个操作会将三角形渲染到表面(颜色缓冲)。
最后,当一帧中的所有对象都渲染完成后(在这个例子中,只有一个),调用Context3D的present方法,告诉Stage3D应用已经将此帧渲染完成,可以将其呈现在屏幕上了。
运行此工程,查看最终效果如下:
以下是完整代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | package { import com.adobe.utils.AGALMiniAssembler; import flash.display.Sprite; import flash.display3D.Context3D; import flash.display3D.Context3DProgramType; import flash.display3D.Context3DVertexBufferFormat; import flash.display3D.IndexBuffer3D; import flash.display3D.Program3D; import flash.display3D.VertexBuffer3D; import flash.events.Event; import flash.geom.Matrix3D; import flash.geom.Rectangle; import flash.geom.Vector3D; import flash.utils.getTimer; [SWF(width="800", height="600", frameRate="60", backgroundColor="#FFFFFF")] public class AGAL extends Sprite { protected var context3D:Context3D; protected var program:Program3D; protected var vertexbuffer:VertexBuffer3D; protected var indexbuffer:IndexBuffer3D; public function AGAL() { stage.stage3Ds[0].addEventListener( Event.CONTEXT3D_CREATE, initMolehill ); stage.stage3Ds[0].requestContext3D(); addEventListener(Event.ENTER_FRAME, onRender); } protected function initMolehill(e:Event):void { context3D = stage.stage3Ds[0].context3D; context3D.configureBackBuffer(800, 600, 1, true); var vertices:Vector.<Number> = Vector.<Number>([ -0.3,-0.3,0, 1, 0, 0, // x, y, z, r, g, b -0.3, 0.3, 0, 0, 1, 0, 0.3, 0.3, 0, 0, 0, 1]); // Create VertexBuffer3D. 3 vertices, of 6 Numbers each vertexbuffer = context3D.createVertexBuffer(3, 6); // Upload VertexBuffer3D to GPU. Offset 0, 3 vertices vertexbuffer.uploadFromVector(vertices, 0, 3); var indices:Vector.<uint> = Vector.<uint>([0, 1, 2]); // Create IndexBuffer3D. Total of 3 indices. 1 triangle of 3 vertices indexbuffer = context3D.createIndexBuffer(3); // Upload IndexBuffer3D to GPU. Offset 0, count 3 indexbuffer.uploadFromVector (indices, 0, 3); var vertexShaderAssembler : AGALMiniAssembler = new AGALMiniAssembler(); vertexShaderAssembler.assemble( Context3DProgramType.VERTEX, "m44 op, va0, vc0\n" + // pos to clipspace "mov v0, va1" // copy color ); var fragmentShaderAssembler : AGALMiniAssembler= new AGALMiniAssembler(); fragmentShaderAssembler.assemble( Context3DProgramType.FRAGMENT, "mov oc, v0" ); program = context3D.createProgram(); program.upload( vertexShaderAssembler.agalcode, fragmentShaderAssembler.agalcode); } protected function onRender(e:Event):void { if ( !context3D ) return; context3D.clear ( 1, 1, 1, 1 ); // vertex position to attribute register 0 context3D.setVertexBufferAt (0, vertexbuffer, 0, Context3DVertexBufferFormat.FLOAT_3); // color to attribute register 1 context3D.setVertexBufferAt(1, vertexbuffer, 3, Context3DVertexBufferFormat.FLOAT_3); // assign shader program context3D.setProgram(program); var m:Matrix3D = new Matrix3D(); m.appendRotation(getTimer()/40, Vector3D.Z_AXIS); context3D.setProgramConstantsFromMatrix(Context3DProgramType.VERTEX, 0, m, true); context3D.drawTriangles(indexbuffer); context3D.present(); } } } |
翻译原文地址:http://uh.9ria.com/link.php?url=http://bbs.9ria.com%2Fviewthread.php%3Ftid%3D108015
本文固定链接: http://www.gisthink.com/blog/guoguogis/?p=338 | GUOGUOGIS
欢迎光临 吾知网 (http://175999.com/bbs/) | Powered by Discuz! X3.2 |